
ADQ7 Development Kit
User Guide

Author(s): Teledyne SP Devices

Document ID: 17-2010

Classification: Public

Revision: D

Print date: 2022-04-07

Classification Revision

Public D

Document ID Print date

17-2010 2022-04-07

Contents

1 Introduction 3

1.1 Definitions and Abbreviations . 3

2 Prerequisites 4

3 Development Environment and Tools 5

3.1 Unpacking the Development Kit . 5

3.2 Opening the Development Kit . 5

3.3 Setting Up the Project . 6

3.4 Building the Design . 6

3.4.1 Rebuilding the User Logic Areas . 6

3.5 Simulating the Design . 7

3.6 Working with the Design . 7

3.6.1 Typical Design Flow . 7

4 General Concepts 9

4.1 Parallel Digital Design . 9

4.2 Data Flow . 9

4.3 Clock Domain Crossing Synchronization . 11

4.4 Control Bus . 12

4.4.1 Control Bus Signals . 12

4.5 Data Bus . 12

4.5.1 Two Bus Definitions . 14

4.5.2 Low-Rate Channels . 14

4.5.3 Bus Signals . 14

5 User Logic 1 26

5.1 Linear Phase FIR Filter . 26

5.2 Using MLVDS in MTCA Backplane . 27

6 User Logic 2 29

7 GPIO 30

8 Troubleshooting 32

8.1 Debugging on Hardware . 32

8.1.1 Creating the Debug Core . 32

8.1.2 Connecting to the Debug Core . 33

9 The inner design of the Multiport DRAM 35

9.1 Ports . 35

9.2 Command mux and port arbitration . 35

9.3 Command / data FIFO . 37

9.4 Tag FIFO . 37

ADQ7 Development Kit – User Guide spdevices.com Page 1 of 40

https://www.spdevices.com

Classification Revision

Public D

Document ID Print date

17-2010 2022-04-07

9.5 Parameter READ_AFULL_DEPTH . 37

9.6 A Note on Row Switches . 37

10 Using VHDL instead of Verilog 39

ADQ7 Development Kit – User Guide spdevices.com Page 2 of 40

https://www.spdevices.com

Classification Revision

Public D

Document ID Print date

17-2010 2022-04-07

1 Introduction

This document is the user guide for the pulse detection firmware’s development kit for the ADQ7 digi-

tizer. There are different versions of the development kit depending on which device-to-host interface

and which operational mode (one-channel or two-channel) of ADQ7 that is targeted. Make sure the

development kit matches the target hardware.

The development kit centers around two user logic areas: UL1 and UL2. These areas target strategic

points in the data path and are specifically intended to contain custom HDL designs.

The first user logic area, UL1, described in Section 5, operates on the full-rate data stream—before

the trigger information has been decoded to create records. The second user logic area, UL2, described

in Section 6, operates on complete records, potentially with a reduced sampling rate.

1.1 Definitions and Abbreviations

Table 1 lists the definitions and abbreviations used in this document.

Table 1: Definitions and abbreviations used in this document.

Item Description

ADC Analog-to-digital converter

CDC Clock domain synchronization

DCP Device checkpoint—represents a saved design state in Vivado.

DevKit Development kit

FPGA Field-programmable gate array

FWPD The pulse detection firmware for ADQ14 and ADQ7.

GiB Gibibyte (10243 bytes)

PROM Programmable read-only memory

PS Parallel samples

PP Parallel packets

QX.Y Fixed-point representation with X integer bits and Y fractional bits.
RTL Register transfer level

Tcl Tool command language—scripting language used in Vivado.

UL1 User logic 1—the first open FPGA area, see Section 5.

UL2 User logic 2—the second open FPGA area, see Section 6.

VHSIC Very high speed integrated circuit

VHDL VHSIC hardware description language

Verilog Hardware description language

Vivado Xilinx FPGA design suite

XCI Xilinx core instance

ADQ7 Development Kit – User Guide spdevices.com Page 3 of 40

https://www.spdevices.com

Classification Revision

Public D

Document ID Print date

17-2010 2022-04-07

2 Prerequisites

The development kit has the following prerequisites:

• A license for the ADQ7 development kit purchased from Teledyne SP Devices.

• A license for the Xilinx design tools. For current versions of the development kit, a license for

Vivado 2020.2 is required (see table below).

– Minimum tooling is the Vivado Design Edition.

– The Vivado WebPack does not support the family of ADQ products.

– Xilinx ISE cannot be used.

• Previous experience with defining custom logic using Verilog or VHDL.

Table 2: Version requirement

Development Kit Revision Tool version

≤r58810 Vivado 2017.1

≥r58811 Vivado 2020.2

ADQ7 Development Kit – User Guide spdevices.com Page 4 of 40

https://www.spdevices.com

Classification Revision

Public D

Document ID Print date

17-2010 2022-04-07

3 Development Environment and Tools

This section describes the development kit workflow and the associated tools.

3.1 Unpacking the Development Kit

The development kit is delivered as a .zip archive containing the project files, source files and doc-

umentation. The first level of the archive contains a README file and another archive that is password

protected. By unpacking the password-protected archive, the user agrees to the terms of the develop-

ment kit license. Make sure to extract the archive to a directory where the current user has read and

write permissions.

 Warning

By unpacking the password-protected archive, the user agrees to the terms of the development kit

license.

 Important

The archive should be extracted to a directory where the user has read and write permissions.

The archive is organized as follows:

<Archive root>/

constraints/ Contains the constraint files for the design.

documentation/ Contains the documentation for the development kit.

edif/ Contains the device checkpoint (DCP) file of the surrounding FPGA de-

sign.

elf/ Contains the Microblaze PROM file.

implementation Contains the Tcl scripts that abstracts several workflow operations.

ip/ Contains the configuration files for the Xilinx IPs used in the design.

source/ Contains the Verilog source files for modules used in the design.

test/ Contains example test benches.

License.txt Development kit license file.

 Note

Though every file in the source/ directory is available for editing, only a few files should be edited.

This is explained further in Sections 5 and 6 which deals with the two user logic areas.

3.2 Opening the Development Kit

To open the development kit in Vivado, follow the steps outlined below.

1. Start Vivado

ADQ7 Development Kit – User Guide spdevices.com Page 5 of 40

https://www.spdevices.com

Classification Revision

Public D

Document ID Print date

17-2010 2022-04-07

2. In the menu bar, select Tools > Run Tcl Script...

3. Open the file <Archive root>/implementation/scripts/devkit.tcl. The Tcl console will output
the following text:

*** ADQ7 Development Kit ***
Usage:

devkit_setup - Create project
devkit_build - Build project
devkit_synth_ul 1 - Generate netlist for user_logic1
devkit_synth_ul 2 - Generate netlist for user_logic2
devkit_mcs - Generate .mcs firmware file
devkit_sim_ul 1 - Run testbench for user_logic1
devkit_sim_ul 2 - Run testbench for user_logic2

At this point, the Tcl commands specific to the development kit have been defined and are available in

the Tcl console. The project is now ready to be set up for first-time use.

3.3 Setting Up the Project

To set up the development kit, execute the command

devkit_setup

in the Tcl console. The process may take a few moments to finish since parts of the design will need to

be compiled. Once the setup is complete, a Vivado project has been created and the design is ready to

be built. This step only has to be completed once.

3.4 Building the Design

To build the entire design, execute the command

devkit_build

in the Tcl console. Depending on the computer specifications and the complexity of the design as a whole,

i.e. the precomplied design and the user logic together, this may take several hours. Once the process

is complete, an .mcs file has been generated in the implementation/ directory. This file represents a

new firmware for the digitizer and may be uploaded using the ADQUpdater application. Refer to the

ADQUpdater user guide [1] for instructions on how to manage the firmware on the ADQ7 digitizer.

3.4.1 Rebuilding the User Logic Areas

The netlists for the two user logic areas may be manually rebuilt using the Tcl command

devkit_synth_ul <target>

where <target> is either 1, to target the first area, or 2 to target the second.

ADQ7 Development Kit – User Guide spdevices.com Page 6 of 40

https://www.spdevices.com

Classification Revision

Public D

Document ID Print date

17-2010 2022-04-07

Once the netlists have been updated to reflect the changes to the design, use the Vivado GUI to

generate a bitstream. Convert the bitstream to an .mcs file by executing the command

devkit_mcs

in the Tcl console.

 Important

Due to a bug in Vivado, the design must be opened after synthesis and the command refresh_design
executed in the Tcl console. Following this action, the build flow may be resumed, continuing with the

implementation step. This occurs automatically when running devkit_build.

3.5 Simulating the Design

The development kit provides simple test benches for both user logic areas. These can be used as a

base for your own tests.

To set up and run the tests in Vivado, use the command

devkit_sim_ul <target>

where <target> is either 1, to target the first area, or 2 to target the second.

After that, the test can be rerun using the usual Vivado commands.

3.6 Working with the Design

Each user logic area can be set as the top-level module of the design (one at a time) with the command

devkit_set_top_ul <target>

where <target> is either 1, to target the first area, or 2 to target the second. This action is helpful

when analyzing the design using Vivado’s RTL analysis tools. Restore the default top-level module by

executing the command

devkit_set_top

in the Tcl console.

3.6.1 Typical Design Flow

This section outlines the typical design flow for the development kit.

1. Set up the development kit project as described in Section 3.3.

2. Modify or insert new Verilog code into user_logic1.v or user_logic2.v. This operation can be

broken down into four steps:

(a) Extract data, data valid and relevant bus signals using the bus extraction macros (see Sec-

tion 4.5.3).

ADQ7 Development Kit – User Guide spdevices.com Page 7 of 40

https://www.spdevices.com

Classification Revision

Public D

Document ID Print date

17-2010 2022-04-07

(b) Process the extracted signals, i.e. stimulate the custom user design.

(c) Insert the processed data, data valid and relevant bus signals using the bus insertion macros

(see Section 4.5.3).

(d) Set the correct value for the BUS_PIPELINE delay parameter to keep the correct time relation

between signals that were not manually inserted.

3. Generate the FPGA configuration file (.mcs file) by using one of the two methods outlined below:

• Automatic

(a) Execute the command

devkit_build

in the Tcl console.

• Manual

(a) Generate the netlist(s) for the modified code by executing the command

devkit_synth_ul <target>

for the modified user logic areas.

(b) Launch the synthesis step by selecting Run Synthesis in Vivado.

(c) Once the synthesis step is complete, open the design by selecting Open Synthesized

Design.

(d) Once the design has been opened, execute the command

refresh_design

in the Tcl console.

(e) Generate the bitstream by selecting Generate Bitstream. This action will launch the im-

plementation step and will end with the bitstream generation.

(f) Once the bitstream is available, generate the FPGA configuration file by executing the

command

devkit_mcs

in the Tcl console. The configuration (.mcs) file can be found in the implementation/
directory after the process is complete.

4. Program the configuration file representing the custom design into the digitizer using the ADQUp-

dater application. Refer to the corresponding user guide [1] for details on the programming process.

5. Test the custom firmware using either

• one of the software examples available in the ADQAPI library or

• a custom user application.

ADQ7 Development Kit – User Guide spdevices.com Page 8 of 40

https://www.spdevices.com

Classification Revision

Public D

Document ID Print date

17-2010 2022-04-07

4 General Concepts

This section introduces concepts surrounding the development kit for ADQ7 in general. The reader is

assumed to be familiar with digital design.

4.1 Parallel Digital Design

More often than not, the FPGA cannot be clocked at the same rate as the incoming data. To handle this

scenario, the logic needs to be implemented to handle several data words per clock cycle, i.e. several

data words in parallel. Parallel design is more challenging than its counterpart, where one data word

is processed per clock cycle, due to the many pitfalls inherent to the former. Instructing the reader

on parallel design is outside the scope of this document but moving forward, some familiarity with the

concept is expected.

In ADQ7, the FPGA is clocked at 312.5 MHz while the data rate is 10 GSPS in the one-channel mode

and 5 GSPS in the two-channel mode. Since a data word is equal to a sample, a parallelization of 32 is

required in the one-channel mode while the two-channel mode instead requires a parallelization of 16.

 Note

The data bus is clocked at 312.5 MHz with a parallization of 32 for the one-channel mode and 16 for

the two-channel mode.

4.2 Data Flow

Fig. 1 presents an overview of the data path where the two user logic areas are highlighted. A brief

description of each block in the data path is provided. Throughout this section, knowledge of concepts

surrounding parallel digital design is assumed. A short summary is presented in Section 4.1. A cycle

may be used to refer to a data clock cycle.

The data propagates between the modules in the data path using an AXI stream bus interface with

custom insertion and extraction macros for convenience (see Section 4.5.3). Additionally, each module

has access to the control bus via an AXI bus interface. These two buses do not exist in the same clock

domain, meaning any signals transferred from one domain to the other must be synchronized to the

receiving clock. Refer to Sections 4.3 and 4.4 for additional details.

 Important

Any signals transferred from the control bus clock domain to the data bus clock domain or vice versa

must be synchronized to the receiving clock.

Trigger module

The trigger module is tasked with decoding and inserting trigger events, as well as the ADC data,

on the data bus. A trigger event consists of a single bit indicating the event itself and additional

information such as the position of the event within the data word. Additionally, functions involving

the timestamp are also located in this module.

ADQ7 Development Kit – User Guide spdevices.com Page 9 of 40

https://www.spdevices.com

Classification Revision

Public D

Document ID Print date

17-2010 2022-04-07

Trigger module

User logic 1

Level trigger

Packet generator

User logic 2

DRAM FIFO

Physical interface

Acquisition module

A B TS
TRIG

SYNC

GPIO 10
GPIO 11

Control bus

GPIO

GPIO 0

GPIO 11

GPDI 0

GPDI 3

GPDO 4

GPDO 6

Sample skip

MTCA
MLVDS

RX17

RX20

TX17

TX20

Data bus

Figure 1: A block diagram of the data path of ADQ7. The two user logic areas are highlighted. In the

one-channel mode, the data from both ADCs is interleaved and propagates on channel A.

User logic 1

The first user logic area in the design. Refer to Section 5 for a more detailed description of the

module.

Sample skip

The sample skip function allows downsampling of the full-rate data stream.

Level trigger

The level trigger module is located after the first user logic area—allowing the user to manipulate

the data stream before threshold crossings are identified. This module is tasked with identifying

the pulses within the data stream. Refer to the ADQ7-FWATD user guide [2] for additional details

on the various settings available for this module.

ADQ7 Development Kit – User Guide spdevices.com Page 10 of 40

https://www.spdevices.com

Classification Revision

Public D

Document ID Print date

17-2010 2022-04-07

Acquisition module

The acquisition module is tasked with framing the channel data into records. A record consists

of a continuous number of samples where the starting point and stopping point is marked by a

logic-high pulse on the record start and record stop data bus signals, respectively. Since records

can only begin and end once per data clock cycle, the minimum record length is one data clock

cycle and the record length must be divisible by the degree of parallelization.

User logic 2

The second user logic area in the design. Refer to Section 6 for a more detailed description of

the module.

Packet generator

The packet generator is tasked with converting the information on the data bus into packets. While

this operation adds some overhead to the data stream, the benefits outweigh the drawbacks since

the data is more manageable in packet form when transmitting over a physical interface.

DRAM FIFO

The packet generator is followed by a DRAM FIFO with a capacity of 2 GiB. This scheme allows

the digitizer to buffer data in the event of a temporary stall on the physical interface. When data

is discarded due to an imbalance between the acquisition rate and the readout rate, packets are

discarded at the FIFO Input,

Physical interface

The digitizer’s physical interface, e.g. USB, PCIe, PXIe or MTCA.

4.3 Clock Domain Crossing Synchronization

A clock domain crossing (CDC) is a boundary where digital signals pass from one clock domain to

another. This boundary constitutes a critical point in the design and care must be taken to synchronize

signals passing through the boundary to the receiving clock.

There are several techniques to choose from depending on the type of signal that should be synchro-

nized, e.g. a multi-bit signal is not handled in the same way as a signal that is 1 bit wide. The reader is

expected to be familiar with CDC synchronization techniques. The paper by Clifford E. Cummings [3] is

a good place to start if the reader’s knowledge needs to be refreshed.

In each of the user logic areas, there is one clock domain crossing in the default design—between the

control bus clock and the data bus clock. This boundary joins the control bus register values, representing

the current configuration, and the data bus logic, tasked with processing the data. To aid the user, there

are two CDC helper modules available in the source/ directory:

source/

ul_cdc_sync.v CDC synchronization module for a 1-bit signal.

ul_cdc_sync_bus_ce.v CDC synchronization of a multi-bit signal using a strobe.

These modules should cover any CDC needs and should be used whenever CDC synchronization is

called for. Refer to Section 4.4 for details on the control bus and to Sections 5 and 6 for examples of

ADQ7 Development Kit – User Guide spdevices.com Page 11 of 40

https://www.spdevices.com

Classification Revision

Public D

Document ID Print date

17-2010 2022-04-07

CDC synchronization and logic making use of these register values.

4.4 Control Bus

Each user logic area has access to the control bus which provides a connection between the custom logic

and the soft microprocessor located in the enclosing design. A transaction cannot be started from a user

logic area and thus, communicating between the two modules using the control bus is not supported.

Instead, transactions are initiated by the microprocessor which in turn is initiated from the ADQAPI,

specifically by using the functions to read or write user registers.

Access a single register

• ReadUserRegister()
• WriteUserRegister()

Access a range of registers

• ReadBlockUserRegister()
• WriteBlockUserRegister()

 Note

Transactions on the control bus cannot be initiated from the user design, only from calling specific

functions in the ADQAPI.

The default user logic design implements a register map but the bus can also be used to interface block

RAMs, FIFOs or other custom logic.

4.4.1 Control Bus Signals

Table 3 presents the signals on the control bus. An acknowledge signal must be transmitted as a re-

sponse to all read and write requests. Otherwise, the bus will hang and the digitizer may become unre-

sponsive.

 Important

An acknowledge signal must be transmitted as a response to all read and write requests. Otherwise,

the bus will hang and the digitizer may become unresponsive.

4.5 Data Bus

The stream of ADC data, its associated control signals and other metadata all propagate on the data

bus. The various signals are intricately related to each other and it is crucial that their relation in time is

kept intact while they are processed by the custom logic.

ADQ7 Development Kit – User Guide spdevices.com Page 12 of 40

https://www.spdevices.com

Classification Revision

Public D

Document ID Print date

17-2010 2022-04-07

Table 3: The signals on the control bus.

Signal Description Direction Polarity

clk Bus clock Input N/A

rst_i Start-up reset Input Active high

addr_i Read/write address, 14 bits Input N/A

wr_i Write strobe Input Active high

wr_ack_o Write data acknowledge Output Active high

wr_data_i Write data 32 bits Input N/A

rd_i Read strobe Input Active high

rd_ack_o Read acknowledge Output Active high

rd_data_o Read data 32 bits Output N/A

 Important

The bus signals are closely related to each other and it is crucial that their relation in time is kept intact

through the user logic areas.

The development kit includes predefined functions to simplify the bus operations. There are two points

where the user design interfaces with the data bus: extraction and insertion. As the names suggest,

targeted signals are extracted from the bus and input to the custom logic to create a response. The

logic’s output signals are inserted back into the data bus and continues to propagate through the design

(see Fig. 1). Signals that are not inserted back into the data bus will be subjected to pipelining with a

delay equal to the value of the BUS_PIPELINE parameter. This parameter must be defined in the same

HDL source file as the bus operations. Fig. 2 outlines the principle of working with the bus signals in the

user space.

Custom logic

Pipeline

Bus

Extracted
fields

Inserted
fields

Fields not
inserted manually

extraction

Bus

insertion

User space

BUS_PIPELINE

Figure 2: A diagram showing the principle of extracting signals from and inserting signals into the

data bus. Any field not inserted manually is subjected to a pipeline delay equal to the value of the

BUS_PIPELINE parameter.

ADQ7 Development Kit – User Guide spdevices.com Page 13 of 40

https://www.spdevices.com

Classification Revision

Public D

Document ID Print date

17-2010 2022-04-07

4.5.1 Two Bus Definitions

Roughly halfway through the design, the data bus is redefined. At this point, a few signals are added

to the bus and a few existing signals change their width. The two definitions are labeled real-time and

reduced ratewhere the former describes the composition of the bus up until the point where it is redefined.

Regardless of where the redefinition occurs, the important point is that the first user user logic area uses

the real-time bus definition while the second user logic area uses the reduced rate definition. The two

bus definitions each have their own set of functions to support bus operations. These are available in

two Verilog header (.vh) files in the source/ directory.

source/

bus_splitter_rt.vh Defines functions to interface with the real-time data bus.

bus_splitter_rr.vh Defines functions to interface with the reduced rate data bus.

4.5.2 Low-Rate Channels

So far, a channel on the data bus has been used to describe the abstraction of the ADC data and its

associated signals—i.e. there has been a one-to-one relation between the physical input signal and

the data bus representation. However, the reduced rate data bus also defines low-rate channels. These

behave like the channels transportingADC data, but they do not have any default content and rely entirely

on a custom user design to define their data.

Normally, the low-rate channels have a lower bandwidth than their counterpart, implemented as fewer

number of parallel samples per data clock cycle. However, this is not always the case and the user

should make use of the available definitions, e.g. UL2_SPD_PARALLEL_SAMPLES_LOWRATE, together with
parameter validation to make the custom design more robust. This constant and others are defined in

files belonging to the respective user logic area. Refer to Sections 5 and 6 for additional details.

Utilizing the low-rate channels may come at a cost—since they enable the digitizer to generate a

higher output data rate than the input data rate. The user must always be vary of the bandwidth of the

device-to-host interface to keep the system balanced.

4.5.3 Bus Signals

This section provides a reference for the bus signals on the real-time (RT) and the reduced rate (RR) data

buses. Each section defines one bus signal, provides a description of its functionality and purpose and

lists the associated bus interface functions. The interface functions are defined on the form insert_*
and extract_*, where * is a string based on the signal name.

Section 4.5.1 explained that the definitions of these interface functions are located in two files: bus_-
splitter_rt.vh and bus_splitter_rr.vh. The user must only include the file matching the bus defini-

tion in the target user logic area, i.e.

• bus_splitter_rt.vh for the first user logic area (UL1) and

• bus_splitter_rr.vh for the second user logic area (UL2).

 Note

In the default design, the source files for the two user logic areas import the appropriate bus definition.

ADQ7 Development Kit – User Guide spdevices.com Page 14 of 40

https://www.spdevices.com

Classification Revision

Public D

Document ID Print date

17-2010 2022-04-07

Table 4: This table presents an overview of the signals on the real-time and the reduced rate data buses.

The table is separated into two sections: one for signals common between the two buses and one for

signals unique to the reduced rate data bus. Refer to the section for each individual signal for details.

Signal Page

Common signals

Timestamp 15

Trigger inhibit 16

Timestamp synchronization 16

Timestamp synchronization counter 17

ADC data 19

Trigger 19

Overrange indicator 20

General purpose 21

Auxilliary trigger 24

Reduced rate signals

Data valid 19

Record bits 21

Record counter 23

User ID 23

Trigger event bit vector 23

Reset event bit vector 24

Timestamp RT: single, RR: per channel

The timestamp signal is tasked with providing a monotonically increasing counter to serve as a

time base for the digitizer. The signal is 64 bits wide and holds an unsigned value that may be

synchronized to external and internal events by using the timestamp synchronization mechanism.

This feature is outlined in the ADQ7-FWATD user guide [2] . The resolution of the time base on

ADQ7 is 25 ps. Hence, the counter increments its value by 128 each data clock cycle.

The timestamp value during a data clock cycle where record start is asserted propagates to

the user space in the host computer via the record header.

insert_timestamp(signal) RT

Insert the 64-bit timestamp signal into the real-time data bus. The timestamp signal is

expected as an input argument.

insert_timestamp(signal, channel) RR

Insert the 64-bit timestamp signal into the reduced rate data bus. The signal and the target
channel are expected as input arguments. The channel is indexed from zero and upwards.

ADQ7 Development Kit – User Guide spdevices.com Page 15 of 40

https://www.spdevices.com

Classification Revision

Public D

Document ID Print date

17-2010 2022-04-07

extract_timestamp(DONT_CARE) RT

Extract the 64-bit timestamp signal from the real-time data bus. The input argument is

not used by the function but must be provided nevertheless. The DONT_CARE parameter is

defined for this purpose.

extract_timestamp(channel) RR

Extract the 64-bit timestamp signal from the reduced rate data bus. The target channel is
expected as an input argument.

Trigger inhibit RT: single, RR: per channel

The trigger inhibit signal is controlled by the trigger blocking mechanism. The signal is one bit

wide and a logic high level implies that triggers are blocked, i.e. trigger events are not converted

into records by the acquisition module. Conversely, a logic low level implies that triggers are

accepted. Refer to the ADQ7-FWATD user guide [2] for additional details on the trigger blocking

mechanism.

insert_trig_inhibit(signal) RT

Insert the 1-bit trigger inhibit signal into the real-time data bus. The inhibit signal is ex-

pected as an input argument.

insert_trig_inhibit(signal, channel) RR

Insert the 1-bit trigger inhibit signal into the reduced rate data bus. The signal and the

target channel are expected as input arguments. The channel is indexed from zero and

upwards.

extract_trig_inhibit(DONT_CARE) RT

Extract the 1-bit trigger inhibit signal from the real-time data bus. The input argument is

not used by the function but must be provided nevertheless. The DONT_CARE parameter is

defined for this purpose.

extract_trig_inhibit(channel) RR

Extract the 1-bit trigger inhibit signal from the reduced rate data bus. The target channel
is expected as an input argument, indexed from zero and upwards.

Timestamp synchronization RT: single, RR: per channel

The timestamp synchronization signal is controlled by the timestamp synchronization mechanism.

The signal is one bit wide and a logic high level implies that the digitizer is waiting for a timestamp

synchronization event and a logic low level implies that the timestamp is in sync—provided the

level was previously logic high—or that the mechanism has not been activated.

insert_timestampsync(signal) RT

Insert the 1-bit timestamp synchronization signal into the real-time data bus. The synchro-

nization signal is expected as an input argument.

ADQ7 Development Kit – User Guide spdevices.com Page 16 of 40

https://www.spdevices.com

Classification Revision

Public D

Document ID Print date

17-2010 2022-04-07

insert_timestampsync(signal, channel) RR

Insert the 1-bit timestamp synchronization signal into the reduced rate data bus. The

signal and the target channel are expected as input arguments. The channel is indexed

from zero and upwards.

extract_timestampsync(DONT_CARE) RT

Extract the 1-bit timestamp synchronization signal from the real-time data bus. The input

argument is not used by the function but must be provided nevertheless. The DONT_CARE
parameter is defined for this purpose.

extract_timestampsync(channel) RR

Extract the 1-bit timestamp synchronization signal from the reduced rate data bus. The

target channel is expected as an input argument, indexed from zero and upwards.

Timestamp synchronization counter RT: single, RR: per channel

The timestamp synchronization counter signal is controlled by the timestamp synchronization

mechanism. The signal is 16 bits wide and holds an unsigned value tasked with keeping track of

the number of timestamp synchronization events since the mechanism was last armed.

The counter value during a data clock cycle where record start is asserted propagates to the

user space in the host computer via the record header—provided the mechanism is set up and

activated.

insert_timestamp_sync_cnt(signal) RT

Insert the 16-bit timestamp synchronization counter signal into the real-time data bus. The

counter signal is expected as an input argument.

insert_timestamp_sync_cnt(signal, channel) RR

Insert the 16-bit timestamp synchronization counter signal into the reduced rate data bus.

The signal and the target channel are expected as input arguments. The channel is

indexed from zero and upwards.

extract_timestamp_sync_cnt(DONT_CARE) RT

Extract the 16-bit timestamp synchronization counter signal from the real-time data bus.

The input argument is not used by the function but must be provided nevertheless. The

DONT_CARE parameter is defined for this purpose.

extract_timestamp_sync_cnt(channel) RR

Extract the 16-bit timestamp synchronization counter signal from the reduced rate data bus.

The target channel is expected as an input argument, indexed from zero and upwards.

Trigger event RT: per channel, RR: per channel

The trigger event is a 1-bit signal indicating that the configured trigger condition has been met in

this data clock cycle. The condition is specified through the ADQAPI function SetTriggerMode().
The signal is active high. The bus interface is listed in Tables 5 and 6.

ADQ7 Development Kit – User Guide spdevices.com Page 17 of 40

https://www.spdevices.com

Classification Revision

Public D

Document ID Print date

17-2010 2022-04-07

Trigger event edge RT: per channel, RR: per channel

The trigger event edge indicates the polarity of the trigger event. A rising edge event is indicated

by a logic high level and a falling edge event is indicated by a logic low level. The value is only

valid when the trigger event is asserted. The bus interface is listed in Tables 5 and 6.

Trigger event number RT: per channel, RR: per channel

The trigger event number is an 8-bit signal holding an unsigned value indicating where in the data

word the trigger occurred. Similar to the timestamp, the signal has a 25 ps resolution but the value

is aligned within the eight bits so that a Q5.3 representation is maintained. In this representation,

the value relates to the current sampling rate so that

• the five MSBs form the integer part of the number—indicating, with sample precision, a

floored value for the trigger point and

• the three LSBs form the start of the fractional part of the number, that together with the

extended precision indicates, with sub-sample precision, the closest 25 ps grid point to the

trigger point.

The value is only valid when the trigger event is asserted. The bus interface is listed in Tables 5

and 6.

Trigger extended precision RT: N/A, RR: per channel

The trigger extended precision signal is a 16-bit signal holding an unsigned value providing ex-

tended precision for the trigger point when the sample skip mechanism is active. When samples

are discarded in the full-rate data stream, the effective sampling rate is reduced. However, the

decimal point in the trigger event number remains fixed and so does the interpretation of the field.

Thus, the additional bits provided by this signal are needed to keep the high precision trigger

information.

All 16 bits are interpreted as a continuation of the fractional part of the trigger event number.

Concatenated, the two signals become a Q5.19 fixed-point number indicating the trigger position

within the data word, with respect to the effective sampling rate. The value is only valid when the

trigger event is asserted. The bus interface is listed in Tables 5 and 6.

Reset event RT: per channel, RR: per channel

The reset event signal is a 1-bit signal with the same principal behavior as a trigger event. How-

ever, the signal is exclusively used by the level trigger . Refer to the ADQ7-FWATD user guide [2]

for details on how the level trigger defines the two event types. The signal is active high. The bus

interface is listed in Tables 5 and 6.

Reset event (pretrigger) RT: per channel, RR: per channel

Identical in function to the reset event but subjected to the pretrigger delay, i.e. the event is always

in sync with the ADC data. The bus interface is listed in Tables 5 and 6.

Reset event edge RT: per channel, RR: per channel

The reset event edge is a 1-bit signal with the same functional behavior as the trigger event edge

except it targets the reset event. The value is only valid when the reset event is asserted. The

bus interface is listed in Tables 5 and 6.

ADQ7 Development Kit – User Guide spdevices.com Page 18 of 40

https://www.spdevices.com

Classification Revision

Public D

Document ID Print date

17-2010 2022-04-07

Reset event number RT: per channel, RR: per channel

The reset event number is a 8-bit signal holding an unsigned value with the same functional

behavior as the trigger event number except it targets the reset event. The value is only valid

when the reset event is asserted. The bus interface is listed in Tables 5 and 6.

Data RT: per channel, RR: per channel

The data signal holds theADC data on a per-channel basis and consists of several samples in par-

allel, as explained in Section 4.1. The width of the signal depends on the firmware configuration,

i.e. if the ADQ7 is running in the one-channel mode or in the two-channel mode. For this purpose,

each user logic area defines constants which must be used to parametrize a custom design. For

example, UL1 defines the width of one sample as UL1_SPD_DATAWIDTH_BITS and the number of

parallel samples as UL1_SPD_PARALLEL_SAMPLES. The width of a sample is always constant but

the number of parallel samples differs between the two base designs (see Section 4.1).

A sample is encoded using a 16-bit 2’s complement representation. The data is MSB-aligned,

meaning that the MSB from the raw 14-bit ADC data is located at bit index 15.

insert_ch_all(signal, channel) RT, RR

Insert the UL1_SPD_PARALLEL_SAMPLES · UL1_SPD_DATAWIDTH_BITS-bit data signal into ei-

ther data bus. The signal and the target channel are expected as input arguments. The

channel is indexed from zero and upwards.

extract_ch_all(channel) RT, RR

Extract the UL1_SPD_PARALLEL_SAMPLES · UL1_SPD_DATAWIDTH_BITS-bit data signal from

either data bus. The target channel is expected as an input argument, indexed from zero

and upwards.

Data valid RT: N/A, RR: per channel

The data valid signal exists on a per-channel basis on the reduced rate data bus. On the real-time

data bus, the signal is not present since by definition, every cycle is considered valid. The signal

is one bit wide and when asserted, every sample in the data word is considered valid, regardless

of the sample skip factor.

insert_data_valid(signal, channel) RR

Insert the 1-bit data valid signal into the reduced rate data bus. The signal and the target

channel are expected as input arguments. The channel is indexed from zero and upwards.

extract_data_valid(channel) RR

Extract the 1-bit data valid signal from the reduced rate data bus. The target channel is

expected as an input argument, indexed from zero and upwards.

Trigger RT: per channel, RR: per channel

The trigger is a collection of the trigger-related signals needed to support ADQ7’s function set and

exists on per-channel basis. Table 5 presents an overview of the trigger and its member signals.

ADQ7 Development Kit – User Guide spdevices.com Page 19 of 40

https://www.spdevices.com

Classification Revision

Public D

Document ID Print date

17-2010 2022-04-07

 Important

It is not recommended to extract and decode the trigger signal explicitly, but rather to use the

functions targeting the individual signals within.

Table 5: This table presents the signals that together constitute the trigger for a data channel. The table

is divided into two sections: one for signals common between the trigger definitions on the real-time data

bus and the reduced rate data bus, and one for signals unique to the latter.

Signal Bus interface

Common signals

Trigger event insert_ch_trig_tevent(signal, channel)
extract_ch_trig_tevent(channel)

Trigger event edge insert_ch_trig_trising(signal, channel)
extract_ch_trig_trising(channel)

Trigger event number insert_ch_trig_tnum(signal, channel)
extract_ch_trig_tnum(channel)

Reset event insert_ch_trig_revent(signal, channel)
extract_ch_trig_revent(channel)

Reset event (pretrigger) insert_ch_trig_revent_pt(signal, channel)
extract_ch_trig_revent_pt(channel)

Reset event edge insert_ch_trig_rrising(signal, channel)
extract_ch_trig_rrising(channel)

Reset event number insert_ch_trig_rnum(signal, channel)
extract_ch_trig_rnum(channel)

Reduced rate signals

Trigger extended precision insert_ch_trig_extended_precision(signal,
channel)
extract_ch_trig_extended_precision(channel)

Overrange indicator RT: per channel, RR: per channel

The overrange indicator is a 1-bit signal indicating that at least one sample in the current data

word has saturated to the minimum or maximum value in the range, whichever is closest.

insert_over_range(signal, channel) RT, RR

Insert the 1-bit data signal into either data bus. The signal and the target channel are

expected as input arguments. The channel is indexed from zero and upwards.

extract_over_range(channel) RT, RR

Extract the 1-bit data signal from either data bus. The target channel is expected as an

input argument, indexed from zero and upwards.

ADQ7 Development Kit – User Guide spdevices.com Page 20 of 40

https://www.spdevices.com

Classification Revision

Public D

Document ID Print date

17-2010 2022-04-07

General purpose RT: per channel, RR: per channel

The general purpose signal is 16 bits wide and may be used to achieve various firmware-specific

goals. Normally, the enclosing design does not impose any restrictions on the signal, but special-

purpose firmwares may reserve the signal for internal use. If no functional conflict exists, the

signal may be used to, e.g. pass information between the two user logic areas in a well-defined

manner. However, if sample skip is employed, only information passed while the record start bit is

asserted is preserved throughout the data path. Additionally, the value during a data clock cycle

which asserts the record start bit, will propagate to the user space in the host computer via the

record header. The general purpose vector can also be used to transport information from user

logic 1 to user logic 2, as it is passed along the bus.

 Note

Future revisions of the pulse detection firmware may claim the general purpose signal to trans-

mit the moving average of the baseline of the ADC data.

 Important

The general purpose vector is not synchronized in time with data from user logic 1 to user logic

2, it is rather transported as fast as possible. The transport timing for this general purpose vector

is also subject to changes between DevKit revisions, thus the user has to design a robust way to

handle these properties. This is for instance made especially clear when activating sample skip

in between, which makes data arrive delayed to user logic 2 compared to the general purpose

vector

insert_general_purpose_vector(signal, channel) RT, RR

Insert the 16-bit general purpose signal into either data bus. The signal and the target

channel are expected as input arguments. The channel is indexed from zero and upwards.

extract_ch_general_purpose_vector(channel) RT, RR

Extract the 16-bit general purpose signal from either data bus. The target channel is ex-

pected as an input argument, indexed from zero and upwards.

Record bits RT: N/A, RR: per channel

The record bits signal consists of two 1-bit signals: record start (bit 0) and record stop (bit 1).

Together they frame a record. They are inclusive, meaning that if either signal is asserted, the

data associated with that data clock cycle belongs to the record.

The data valid signal is guaranteed to be asserted if either of the record bits is asserted. It is

imperative that any custom design in the second user logic area keeps this property.

 Important

The data valid signal is guaranteed to be asserted when either of the record bits are. This

property must be preserved when handling the bus signals in a custom design placed in the

second user logic area.

ADQ7 Development Kit – User Guide spdevices.com Page 21 of 40

https://www.spdevices.com

Classification Revision

Public D

Document ID Print date

17-2010 2022-04-07

Figs. 3 and 4 present a timing diagram for the record bits when sample skip is disabled and

enabled, respectively. Note that record start and record stop may be asserted for multiple cycles,

with only one cycle which overlaps with data valid.

It is important that the integrity of the record bits is preserved. The second user logic area must

output one—and only one—record stop for each record start event. To discard a record, record

start and record stop assertions must be removed in pairs. If multiple record start events are

output without their corresponding record stop events, data corruption will ensue. Listed below is

a summary of the properties of the record bits.

• Only one record stop event per record start event may be output. Multiple record start events

without any record stop events will result in data corruption.

• The record bits are only valid when data valid is asserted.

• The record bits are asserted in the same data clock cycle for records which consist of one

data word (the minimum record length).

• The record bits may be asserted for multiple cycles. Only one of these cycles must have

data valid asserted.

• For the multi-record data acquisition mode, the record length must be preserved. For the

triggered streaming data acquisition mode, the length may be modified. Refer to the ADQ7

manual [4] for information on the data acquisition modes.

• For the multi-record mode, the number of records must be preserved. For the triggered

streaming mode, records may be generated or discarded in the second user logic area.

insert_record_bits(signal, channel) RR

Insert the 2-bit record bits signal into the reduced rate data bus. The signal and the target
channel are expected as input arguments. The channel is indexed from zero and upwards.

extract_record_bits(channel) RR

Extract the 2-bit record bits signal from the reduced rate data bus. The target channel is

expected as an input argument, indexed from zero and upwards.

Clock

Data valid

(start) record_bits[0]

(stop) record_bits[1]

Data D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16

Timestamp T0 T1

Figure 3: Timing diagram for the record bits when sample skip is disabled (skip factor 1). The figure

presents two records. The first record spans ten data clock cycles and the second spans one data clock

cycle.

ADQ7 Development Kit – User Guide spdevices.com Page 22 of 40

https://www.spdevices.com

Classification Revision

Public D

Document ID Print date

17-2010 2022-04-07

Clock

Data valid

(start) Record bits[0]

(stop) Record bits[1]

Data D0 D1 D2 D3 D4 D5

Timestamp T0

Figure 4: Timing diagram for the record bits when sample skip is enabled. The record spans five data

clock cycles.

Record counter RT: N/A, RR: per channel

The record counter signal holds a 16-bit unsigned value tasked with keeping track of the number

of records that have been created since the digitizer was last armed. Arming the digitizer is carried

out by the calling the ADQAPI functions StartStreaming() or ArmTrigger(), depending on the

data collection mode. The value is only valid when record start is asserted.

insert_record_cnt(signal, channel) RR

Insert the 16-bit counter signal into the reduced rate data bus. The signal and the target

channel are expected as input arguments. The channel is indexed from zero and upwards.

extract_record_cnt(channel) RR

Extract the 16-bit counter signal from the reduced rate data bus. The target channel is

expected as an input argument, indexed from zero and upwards.

User ID RT: N/A, RR: per channel

The user ID is an 8-bit signal with similar function to the general purpose signal. However, this

signal may never be claimed for firmware-specific purposes and is reserved for the user. The

value during a data clock cycle in which the record start bit is asserted will propagate to the user

space in the host computer via the record header.

insert_user_id(signal, channel) RR

Insert the 8-bit user ID signal into the reduced rate data bus. The signal and the target

channel are expected as input arguments. The channel is indexed from zero and upwards.

extract_user_id(channel) RR

Extract the 8-bit user ID signal from the reduced rate data bus. The target channel is

expected as an input argument, indexed from zero and upwards.

Trigger event bit vector RT: N/A, RR: per channel

The trigger event bit vector is a signal of width equal to the number of parallel samples in the data

word. Each bit in the signal is associated with the sample with the same index and indicates

• the presence of a trigger event with a logic high level and

• the absence of the trigger event with a logic low level.

ADQ7 Development Kit – User Guide spdevices.com Page 23 of 40

https://www.spdevices.com

Classification Revision

Public D

Document ID Print date

17-2010 2022-04-07

This signal is only connected to the level trigger. Hence, it is only active when the level trigger is

configured and enabled. This holds true regardless of whether or not the level trigger is used for

data acquisition.

The signal is used to distinguish multiple events in one data clock cycle. Due to the nature of

the level trigger, only every other sample may indicate a trigger event in the worst case.

 Example

If bit 0 is asserted, the trigger condition is fulfilled for the sample at index 0 in the data word.

insert_ch_trig_tevent_bitvect(signal, channel) RR

Insert the trigger event bit vector signal into the reduced rate data bus. The signal and the
target channel are expected as input arguments. The channel is indexed from zero and

upwards.

extract_ch_trig_tevent_bitvect(channel) RR

Extract the trigger event bit vector signal from the reduced rate data bus. The target

channel is expected as an input argument, indexed from zero and upwards.

Reset event bit vector RT: N/A, RR: per channel

The reset event bit vector is a signal with the same principal behavior as the trigger event bit

vector, apart from tracking reset events instead of trigger events. The signal is only active when

the level trigger is configured and enabled.

insert_ch_trig_revent_bitvect(signal, channel) RR

Insert the reset event bit vector signal into the reduced rate data bus. The signal and the

target channel are expected as input arguments. The channel is indexed from zero and

upwards.

extract_ch_trig_revent_bitvect(channel) RR

Extract the reset event bit vector signal from the reduced rate data bus. The target channel
is expected as an input argument, indexed from zero and upwards.

Auxilliary trigger RT: single, RR: single

The auxilliary trigger is a collection of the same types of trigger-related signals as the channel

trigger but operates independently. Additionally, there is only one auxilliary trigger signal on the

data bus, as opposed to one per channel. The auxilliary trigger is configured by calling SetAux-
TriggerMode().

The purpose of this additional trigger signal is to serve custom designs which require that two

separate trigger sources are observed. The enclosing ADQ7 design does not use the auxilliary

trigger and neither is it forwarded to the host computer. It is a signal with the specific purpose

of stimulating custom logic. Table 6 presents the collection of auxilliary trigger signals and their

corresponding bus interface.

ADQ7 Development Kit – User Guide spdevices.com Page 24 of 40

https://www.spdevices.com

Classification Revision

Public D

Document ID Print date

17-2010 2022-04-07

Table 6: This table presents the signals that together constitute the auxilliary trigger. The table is divided

into two sections: one for signals common between the trigger definitions on the real-time data bus and

the reduced rate data bus, and one for signals unique to the latter.

Signal Bus interface

Common signals

Trigger event insert_aux_trig_tevent(event)
extract_aux_trig_tevent(DONT_CARE)

Trigger event edge insert_aux_trig_trising(edge)
extract_aux_trig_trising(DONT_CARE)

Trigger event number insert_aux_trig_tnum(number)
extract_aux_trig_tnum(DONT_CARE)

Reset event insert_aux_trig_revent(event)
extract_aux_trig_revent(DONT_CARE)

Reset event (pretrigger) insert_aux_trig_revent_pt(event)
extract_aux_trig_revent_pt(DONT_CARE)

Reset event edge insert_aux_trig_rrising(edge)
extract_aux_trig_rrising(DONT_CARE)

Reset event number insert_aux_trig_rnum(number)
extract_aux_trig_rnum(DONT_CARE)

Reduced rate signals

Trigger extended precision insert_aux_trig_extended_precision(precision)
extract_aux_trig_extended_precision(DONT_CARE)

ADQ7 Development Kit – User Guide spdevices.com Page 25 of 40

https://www.spdevices.com

Classification Revision

Public D

Document ID Print date

17-2010 2022-04-07

5 User Logic 1

The first user logic module uses the real-time bus definition (Section 4.5) to describe the composition of

the data bus. At this point in the data path (Fig. 1), there is no data valid signal present since every data

clock cycle is considered valid. Thus, the enclosing design expects any custom design to output valid

data on each data clock cycle.

 Important

The first user logic area expects valid data to be output on each data clock cycle. There is no data

valid signal at this point in the data path.

 Note

The file source/user_logic1_defines.vh defines constants to use when parametrizing a design in

the first user logic area.

5.1 Linear Phase FIR Filter

By default, the first user logic area contains example code implementing an order 16 linear phase FIR

filter. Fig. 5 presents a block diagram of the top-level module. The top-level design demonstrates

• how to interface with the data bus (Section 4.5),

• how to modify the register map to add new control bus registers (Section 4.4) and

• how to perform clock domain synchronization (Section 4.3) of the register values forwarded to the

filter’s configuration interface.

Register file

ul1_regfile

32 b

0x04

Loopback
of writeable
registers

0x05

0x06

0x10

0x11

0x12

0x13

Filter control

Filter coefficients

Filter configuration

Writeable demo 0

Writeable demo 1

Readable demo 0

Readable demo 1

CDC
Synchronization

Control bus

Linear phase
FIR filter

Coefficient
memory

Bus
extraction

Bus
insertion

Channel A
Channel X

Channel B

Pipeline

ul_pipeline

ul_linphase_fir

ul_coeff_mem

Constants

Data bus

Control bus
clock

Data bus
clock

Figure 5: A block diagram of the default design present in the first user logic area. The top level contains

a linear phase FIR filter of order 16.

ADQ7 Development Kit – User Guide spdevices.com Page 26 of 40

https://www.spdevices.com

Classification Revision

Public D

Document ID Print date

17-2010 2022-04-07

The filter implementation is a heavily parametrized polyphase decomposed linear phase FIR filter and

thus demonstrates the concept of parallel design (Section 4.1). The top level module defines parameters

that may be used to change the filter properties, e.g. the filter order, coefficient width and the coefficient

fixed-point representation. However, there are limitations. For example, the filter order must be an even

number in order for the group delay to be an integer. Additionally, increasing the coefficient width will

require modification of the control bus interface and its CDC structures. In most cases, the design should

provide error messages upon compilation if an invalid parameter set has been provided. The filter design

is separated into the following files:

source/

ul_coeff_mem.v Implements the filter coefficient memory. The sychronized reg-

ister values are passed to this module.

ul_linphase_fir.v Implements the filter top level. The module accepts the full-

width data signal as input and responds with the processed

data on the same format.

ul_linphase_fir_unit.v Implements the processing branch in the polyphase decom-

posed filter structure.

ul_linphase_fir_bs.v Implements a barrel shifter to compensate for the group delay

of the filter.

ul_add_macc.v Implements an add, multiply and accumulate module. The in-

ternal filter structure consists of several of these modules in

cascade.

ul_saturated_rounding.v Implements saturated rounding for the filter output signal.

ul_dsp_primitive.vh Helper file instantiating a DSP48E2 primitive when targeted by

an ̀include statement.

ul_clog2.vh Helper file defining the ceiled log2 function.

5.2 Using MLVDS in MTCA Backplane

The control of MLVDS in the MTCA backplane is given to the user, using ports mlvds_rx_i, mlvds_tx_i,
mlvds_rx_o and mlvds_tx_o. The default user logic code only relays the information from the trigger

module. The direction is set by SetDirectionMLVDS API, and all 8 MLVDS can either be configured as

input (default) or output, individually.

The information from the trigger module to the MLVDS outputs are using ports mlvds_rx_o_from_-
datatrig_i[3:0] and mlvds_tx_o_from_datatrig_i[3:0].

 Note

These can also be used to transport the configured output trigger information back to User Logic 1,

regardless of using the actual MLVDS or not.

The mapping of ports on User logic 1 vs the MLVDS are given by the following table:

ADQ7 Development Kit – User Guide spdevices.com Page 27 of 40

https://www.spdevices.com

Classification Revision

Public D

Document ID Print date

17-2010 2022-04-07

Table 7: MTCA MLVDS mapping to User logic 1

To/From physical pins To/From User Logic Direction

RX17 mlvds_rx_i[0] Input

RX17 mlvds_rx_o[0] Output

RX18 mlvds_rx_i[1] Input

RX18 mlvds_rx_o[1] Output

RX19 mlvds_rx_i[2] Input

RX19 mlvds_rx_o[2] Output

RX20 mlvds_rx_i[3] Input

RX20 mlvds_rx_o[3] Output

TX17 mlvds_tx_i[0] Input

TX17 mlvds_tx_o[0] Output

TX18 mlvds_tx_i[1] Input

TX18 mlvds_tx_o[1] Output

TX19 mlvds_tx_i[2] Input

TX19 mlvds_tx_o[2] Output

TX20 mlvds_tx_i[3] Input

TX20 mlvds_tx_o[3] Output

ADQ7 Development Kit – User Guide spdevices.com Page 28 of 40

https://www.spdevices.com

Classification Revision

Public D

Document ID Print date

17-2010 2022-04-07

6 User Logic 2

The second user logic module uses the reduced rate bus definition (Section 4.5) to describe the com-

position of the data bus. At this point in the data path (Fig. 1), there is a data valid signal present and

the user may modify the output data stream by modulating this signal. However, doing so in a dynamic

manner—i.e. creating records of varying sizes—is only supported by the streaming-type data collection

modes. Refer to the section describing the record bits for the requirements of these framing signals.

 Important

It is crucial that the record framing signals output from the second user logic area have the correct

behavior with respect to the data valid signal.

 Note

The file source/user_logic2_defines.vh defines constants to use when parametrizing a design in

the second user logic area.

ADQ7 Development Kit – User Guide spdevices.com Page 29 of 40

https://www.spdevices.com

Classification Revision

Public D

Document ID Print date

17-2010 2022-04-07

7 GPIO

General purpose input and output pins (GPIO) are available in the second user logic area for PCIe and

PXIe devices. The GPIO connector is presented in Fig. 6. The following pins are available:

• 12 bidirectional single-ended signals (3.3 V)

• 3 differential LVDS outputs

• 4 differential LVDS inputs

• 2 output supply pins. 3.3 V, max 250 mA.

The GPIO signals are routed from the physical pins through UL2 to the control bus. The interface signals

to control the GPIO pins are presented in Table 8. The signals in the To/From Host column are read and

written from the ADQAPI. The direction of the bidirectional pins are controlled by the gpio_dir_o signal.
Each direction bit controls the direction of two GPIO pins: gpio_dir_o[0] controls GPIO0 and GPIO1,

gpio_dir_o[1] controls GPIO2 and GPIO3 etc.

Table 8: GPIO signals in the second user logic area. The signals in the pins column is connected to the

physical pins, and the signals in the host column is controlled by the host.

To/From pins To/From Host Width Description

gpio_in_i gpio_in_o 12 Input

gpio_out_o gpio_out_i 12 Output

gpio_dir_o gpio_dir_i 6 Direction signal. 1: input, 0: output

gpdi_in_i gpdi_in_o 4 Differential input

gpdo_out_i gpdo_out_o 3 Differential output

ADQ7 Development Kit – User Guide spdevices.com Page 30 of 40

https://www.spdevices.com

Classification Revision

Public D

Document ID Print date

17-2010 2022-04-07

1 GPDIC0_P LVDS input / clock 16 GND 31 GPIO0 Single-ended 3.3 V

2 GPDIC0_N LVDS input / clock 17 GND 32 GPIO1 Single-ended 3.3 V

3 GPDI1_P LVDS input 18 GND 33 GPIO2 Single-ended 3.3 V

4 GPDI1_N LVDS input 19 GND 34 GPIO3 Single-ended 3.3 V

5 GPDI2_P LVDS input 20 GND 35 GPIO4 Single-ended 3.3 V

6 GPDI2_N LVDS input 21 GND 36 GPIO5 Single-ended 3.3 V

7 GPDIC3_P LVDS input / clock 22 GND 37 GPIO6 Single-ended 3.3 V

8 GPDIC3_N LVDS input / clock 23 GND 38 GPIO7 Single-ended 3.3 V

9 GPDO4_P LVDS output 24 GND 39 GPIO8 Single-ended 3.3 V

10 GPDO4_N LVDS output 25 GND 40 GPIO9 Single-ended 3.3 V

11 GPDO5_P LVDS output 26 GND 41 GPIO10 Single-ended 3.3 V

12 GPDO5_N LVDS output 27 GND 42 GPIO11 Single-ended 3.3 V

13 GPDO6_P LVDS output 28 GND 43 VDD 3.3V 250mA

14 GPDO6_N LVDS output 29 GND 44 VDD 3.3V 250mA

15 NC NC 30 GND

1

15

16
31

30
44

Figure 6: Schematic of the GPIO connector for PCIe/PXIe devices.

ADQ7 Development Kit – User Guide spdevices.com Page 31 of 40

https://www.spdevices.com

Classification Revision

Public D

Document ID Print date

17-2010 2022-04-07

8 Troubleshooting

This section aims to provide guidance when troubleshooting unexpected behavior. It is recommended

that the user application is written in a robust manner, able to capture and report error codes from failed

ADQAPI function calls. In the event of a function call failure, reading the ADQAPI trace log for additional

information is a useful first step. Trace loggingmust be activated by calling ADQControlUnit_EnableErrorTrace()
with the trace_level argument set to 3.

If the error message is difficult to interpret, the Teledyne SP Devices support can be reached via

e-mail at spd_support@teledyne.com. Please include information about the use case such as the pulse

detection settings as well as the specification for both the trigger and data signals. Make sure to include

a trace log file from a run where the error appears.

However, the support team cannot help the user with issues originating in the user’s custom design

in any of the user logic areas. Additionally, no training sessions on the topic of HDL design will be offered

free of charge.

When facing a problem localized to the custom user logic design, Section 8.1 provides one possible

way forward in those situations.

 Important

Teledyne SP Devices’ support cannot help with issues localized to the user’s custom logic design nor

offer training for HDL design concepts.

8.1 Debugging on Hardware

The section describes one possible workflow for setting up and connecting to a Xilinx debug core. Refer

to the Xilinx documentation for further instructions. A good starting point is the Vivado Programming and

Debugging User Guide [5].

 Warning

Debugging on hardware requires physical access to the digitizer PCB.

8.1.1 Creating the Debug Core

1. Mark the signals as debug with the mark_debug property, for example in Verilog

(* mark_debug = ”true” *) wire signal_to_debug;

Setting the mark_debug property makes the signals available in the debug wizard and ensures that

the tool will not remove the signals in optimization.

2. Synthesize the design by:

(a) Run the Tcl command

devkit_synth_ul 1

to generate a netlist for UL1.

ADQ7 Development Kit – User Guide spdevices.com Page 32 of 40

mailto:spd_support@teledyne.com?body=<Please attach a trace log file>
https://www.spdevices.com

Classification Revision

Public D

Document ID Print date

17-2010 2022-04-07

(b) Run the Tcl command

devkit_synth_ul 2

to generate a netlist for UL2.

(c) Click on Run Synthesis and wait for Vivado to finish synthesizing the complete design.

3. Open the synthesized design by clicking on Open Synthesized Design.

4. Run the Tcl command

refresh_design

5. Open the debug wizard by clicking on Setup Debug and follow the instructions.

6. Generate the bitstream by clicking on Generate bitstream.

7. When the process has finished, run the Tcl command

devkit_mcs

8. Copy the generated files

• implementation/DevKit.runs/impl_1/debug_nets.ltx

• implementation/adq7.mcs

• implementation/adq7.bit

to a permanent location.

9. Program the firmware image (.mcs file) using ADQUpdater. Refer to the ADQUpdater user guide

for instructions on how to manage the firmware on the ADQ7 digitizer [1].

8.1.2 Connecting to the Debug Core

The Vivado Hardware Manger is used to connect to the debug core. Connecting to the debug core

requires that

• the .mcs file with core has been programmed and that

• the debug_nets.ltx file is available.

Depending on the clock signals chosen for the debug core, the firmware may have to be initialized before

Vivado Hardware Manager can find the debug core. Initialization is done by calling the ADQAPI function

SetupDevice().

 Important

The clock used for the debug core must be running for the core to function.

1. Connect the Xilinx platform cable to the digitizer’s JTAG port.

ADQ7 Development Kit – User Guide spdevices.com Page 33 of 40

https://www.spdevices.com

Classification Revision

Public D

Document ID Print date

17-2010 2022-04-07

2. Start Vivado and click on Open Hardware Manager.

3. Click on Open Target and chose Auto Connect.

4. In the trigger setup window, click on Specify probe file and refresh device.

5. Browse to the debug_nets.ltx file and click on refresh.

Refer to the Vivado Programming and Debugging User Guide [5] for further instructions.

ADQ7 Development Kit – User Guide spdevices.com Page 34 of 40

https://www.spdevices.com

Classification Revision

Public D

Document ID Print date

17-2010 2022-04-07

9 The inner design of the Multiport DRAM

Multiport is essentially a multiple port interface towards the two DRAM controllers. It handles port arbi-

tration, DRAM command generation and allows both read and write ports. The user logic 2 in ADQ7 has

access to one writer port and one reader port on each of the two DRAM conntrolles, while the framework

design at the same time also has a number of reader and writer ports.

The writer ports and reader ports respectively, share the same structure and have the same function-

ality. The only difference is how they are prioritized in their access to the DRAM.

 Important

The DRAM is by default used as a FIFO for the data transfer to the PC. This FIFO must be disabled

before acessing the DRAM from user logic 2. This is done by the ADQAPI command:

SetStreamConfig()

Please be aware of that the data transfer will in this case only use a small FIFO and that this may

cause data owerflow if data is generated faster than the readout to the PC.

9.1 Ports

Since multiport handles the port arbitration, it is also the master on both the reader port and writer port

buses, i.e. it signals I will read data this clock cycle on the writer port, and I am outputting valid data this

clock cycle on the reader port.

The memory space which is to be read from / written to is selected by the device communicating with

the port, via address pointers and a strobe signal.

There are no FIFOs in the actual ports, they are effectively just interfacing between the FIFO in the

device using the port, and the command/data FIFOs.

Something that should be noted is that the ports themselves run on the global memory clock in the

FPGA, but the DRAM controller runs on its own DRAM clock. These run at the same clock rate but are

separate clock networks. For write operations, the clock domain crossing happens in the command/data

FIFOs. For read operations, there is no such FIFO in multiport, however, and the data is instead just

clocked directly to the memory clock domain.

Both reader and writer ports support address wrapping. In the case of the writer port, the write address

will keep wrapping from last to first address, until the write_last signal is asserted.

In the reader port there are two sets of addresses: high and low set up a memory area to wrap around,

while first and last set up the start address and end address of the readout. Since the digitizers often

use circular writing to memory areas until a trigger occurs, the typical use case is for the reader port is

to set high/low to the edges of the circular buffer, set first to wherever the trigger.

Table 9 contains a description of the port signals.

9.2 Command mux and port arbitration

The command mux selects which port is allowed to input commands to the command FIFO. The mux

contains state machines called select and select_hot, which are actually duplicates of each other but

with different encoding (integer coded and one-hot coded respectively) in order to improve timing. These

are used to select which port is current enabled.

ADQ7 Development Kit – User Guide spdevices.com Page 35 of 40

https://www.spdevices.com

Classification Revision

Public D

Document ID Print date

17-2010 2022-04-07

Table 9: DRAM User interface

Signal name Direction Description

read_reset_i Input Reset signal

read_strobe_i Input Strobe in order to start a read operation

read_abort_i Input Assert to abort read operation (stop generating

read commands)

read_first_addr_i Input First address of read operation

read_last_addr_i Input Last address of read operation

read_low_addr_i Input Low address of read operation (memory wrap)

read_high_addr_i Input High address of read operation (memory wrap)

read_sent_o Output Asserted when the port has finished generating

read command, signaling that a new read opera-

tion can be strobed. Note that while all read com-

mands have been sent, they may not have been

processed yet (which is what the read_done_o

output is used to indicate).

read_done_o Output Asserted when read operation is completed, all

commands have been applied to the DRAM con-

troller and all data has been output.

read_data_o Output Data port (256 bits)

read_firstdata_o Output Asserted during the first data word output

(read_data_o) of a read operation

read_lastdata_o Output Asserted during the last data word output

(read_data_o) of a read operation

read_wr_o Output Output valid signal for read_data_o

read_afull_i Input Almost full flag, assert to throttle the data output

of the port (see also READ_AFULL_DEPTH)

write_reset_i Input Reset signal

write_strobe_i Input Assert to strobe address information for write op-

eration

write_first_addr_i Input First address for write operation (32 bits)

write_last_addr_i Input Last address for write operation (wraps on this

address) (32 bits)

write_done_o Output Asserted when write operation is done

write_data_i Input Data port (256 bits)

write_last_i Input Stops the write operation (assert synchronously

with the last data word to be written). If this is not

asserted, the write operation will wrap over the

first/last address space.

write_empty_i Input Empty signal, assert to stop the port from reading

data

write_read_o Output Read signal, write_data_i will be captured and

written when this is asserted

ADQ7 Development Kit – User Guide spdevices.com Page 36 of 40

https://www.spdevices.com

Classification Revision

Public D

Document ID Print date

17-2010 2022-04-07

There is a strict prioritization between ports (see the ordering in the overview block diagram). As

soon as a higher priority port signals not empty, the select register changes value and the mux starts

accepting command from the new port starting with the next clock cycle.

9.3 Command / data FIFO

Data is read from / written to the DRAM using commands. The current multiport module only supports

memory controller setups which produce one clock cycle of data per command.

As an example, theADQ7memory architecture has a 64-bit external bus, with a 1:4 memory controller

giving 256 bits internally. The burst setting is also 1:4, resulting in a burst of four 64-bit accesses for each

command, giving a single cycle of internal 256-bit data.

The ports automatically generate read/write commands across the space which the communicating

device requested via strobe and address inputs

9.4 Tag FIFO

A write that is sent to the writer FIFO has no need to keep track of which port sent the write. A read

however, needs to know where to send its results. That is what the tag FIFO is used for. At the same

time as a command is sent to the command FIFO, a read port address is also entered into the tag FIFO.

After the command has been sent, and the data returned from the DRAM, the tag is used to determine

which port to send the read data to.

The tag FIFO also passes two additional bits, firstdata and lastdata, which are generated by the

reader port to signal which data words are first and last in a read operation.

9.5 Parameter READ_AFULL_DEPTH

Each reader port is instantiated in multiport top with a parameter called READ_AFULL_DEPTH. The data

chain for reading from DRAM looks like below, if we simplify away the other ports:

The data reader port will send out bursts of read commands into the command FIFO, and will not stop

until the module which is connected to the read port sends its ”almost full” signal. However, since the

command FIFO can contain several commands, this means that even though the read port stops sending

more commands when the ”almost full” is received, there will still be some extra writes done depending

on how many commands were already in the writer FIFO when the full signal was received. There is

also a FIFO and pipelining in the DRAM + DRAM controller which can hold some pending commands

The READ_AFULL_DEPTH sets how many read commands the port is allowed to have in the writer

FIFO and DRAM loop at any given time, before pausing and waiting for data to come back. This pa-

rameter should therefore be set to less than the remaining amount of rows in the receiving module FIFO

when almost full is sent

On ADQ7 READ_AFULL_DEPTH is 128. It is recommended to add at least 8 to this for the almost

full limit to account for delay in the DRAM controller.

9.6 A Note on Row Switches

The DRAM chips contain a number of banks. Each bank has a number of rows, which in turn has a

number of columns. When data is to be accessed, the desired row is first cached in a row register (in

ADQ7 Development Kit – User Guide spdevices.com Page 37 of 40

https://www.spdevices.com

Classification Revision

Public D

Document ID Print date

17-2010 2022-04-07

the chip), and the desired column is then read out to the DRAM controller.

Whenever a new row is accessed, the old row must be written back to memory, and the new one

read out. This is called a row switch, and is fairly costly in terms of latency.

ADQ7 Development Kit – User Guide spdevices.com Page 38 of 40

https://www.spdevices.com

Classification Revision

Public D

Document ID Print date

17-2010 2022-04-07

10 Using VHDL instead of Verilog

All code in the DevKit is Verilog. However, Vivado lets you mix Verilog and VHDL code without limitations,

so you can choose to write your user code in VHDL.

Instantiate your VHDL module (see figure below – user_module_XXX.vhd) in the user logic code

(user_logic1.v or user_logic2.v) in Verilog-style, and then you can write the modules in any of the lan-

guages you want. The tools will accept both Verilog and VHDL, the only important thing is that the

instantiation interface is correct and same as the implemented. The simulation tools in Vivado will let

you do mixed Verilog/VHDL simulation.

Figure 7: Hierarchy required to use VHDL

The top-level itself relies on macros (for theAXI bus extractions and insertions for instance) in Verilog,

so it cannot be altered to VHDL. But after extraction and before insertion you can for instance pass on

all ports (or the subset you need) to a submodule written in VHDL

ADQ7 Development Kit – User Guide spdevices.com Page 39 of 40

https://www.spdevices.com

Classification Revision

Public D

Document ID Print date

17-2010 2022-04-07

References

[1] Teledyne Signal Processing Devices SwedenAB, 18-2059 ADQUpdater User Guide. Technical Man-

ual.

[2] Teledyne Signal Processing Devices Sweden AB, 17-1957 ADQ7-FWATD User Guide. Technical

Manual.

[3] C. E. Cummings, “Clock domain crossing (CDC) design & verification techniques using SystemVer-

ilog,” in SNUG 2008 proceedings, (Boston, MA, USA), Sunburst Design, Inc., 2008.

[4] Teledyne Signal Processing Devices Sweden AB, 16-1796 ADQ7 manual. Technical Manual.

[5] Xilinx Inc., Programming and Debugging, June 2020. User Guide (UG908).

ADQ7 Development Kit – User Guide spdevices.com Page 40 of 40

https://www.spdevices.com

Worldwide Sales and Technical Support

spdevices.com

Teledyne SP Devices Corporate Headquarters

Teknikringen 8D

SE-583 30 Linköping

Sweden

Phone: +46 (0)13 645 0600

Fax: +46 (0)13 991 3044

Email: spd_info@teledyne.com

Copyright © 2022 Teledyne Signal Processing Devices Sweden AB

All rights reserved, including those to reproduce this publication or parts thereof in any form without permission in writing from Teledyne SP Devices.

https://spdevices.com
mailto:spd_info@teledyne.com

	Introduction
	Definitions and Abbreviations

	Prerequisites
	Development Environment and Tools
	Unpacking the Development Kit
	Opening the Development Kit
	Setting Up the Project
	Building the Design
	Rebuilding the User Logic Areas

	Simulating the Design
	Working with the Design
	Typical Design Flow

	General Concepts
	Parallel Digital Design
	Data Flow
	Clock Domain Crossing Synchronization
	Control Bus
	Control Bus Signals

	Data Bus
	Two Bus Definitions
	Low-Rate Channels
	Bus Signals

	User Logic 1
	Linear Phase FIR Filter
	Using MLVDS in MTCA Backplane

	User Logic 2
	GPIO
	Troubleshooting
	Debugging on Hardware
	Creating the Debug Core
	Connecting to the Debug Core

	The inner design of the Multiport DRAM
	Ports
	Command mux and port arbitration
	Command / data FIFO
	Tag FIFO
	Parameter READ_AFULL_DEPTH
	A Note on Row Switches

	Using VHDL instead of Verilog

